Variation in autism and ADHD symptomatology reveals differential uses of discourse markers

Cynthia Booa,d, Nancy McIntyreb, Peter Mundyc, Letty Naiglesa,d

aUniversity of Connecticut, bUniversity of Central Florida, cUC Davis, MIND Institute dInstitute of Brain & Cognitive Sciences

Correspondence: cynthia.boot@uconn.edu

Background

- Some autistic individuals use "um," a discourse marker (DM), less often than non-autistic individuals in monologic contexts BUT not in interactive contexts.1,2,3
- Suggesting mixed impacts of autistic youths' social communication challenges on DM use
- Scrutiny of other DMs, such as "like," has also revealed comparable rates.4
- "Like" is particularly noteworthy – it serves a multitude of functions: a) focusing device ("Like, we went to Disney"); b) marker of looseness ("I got like a hundred presents"); c) quotative marker ("He was like 'that was scary'"); and d) indicator of reformulation ("I want a new PlayStation, like, the newest one").
- However, little attention has been paid to other DMs aside from "um" and "like" in autism.
- Other DMs, such as "but," also serve more than one function;5 a) marker of simple contrast ("My brother is older than me, but my sister is older than both of us"); and b) violation-of-expectations (V-O-E; "My brother is older than me, but he acts like a baby").
- Furthermore, despite high co-occurrence,6 few studies have looked at DM use of individuals with co-occurring symptomatology of autism and ADHD (AuDHD).

OBJECTIVE: To investigate a) more specific uses of DMs, and b) across varying autism and ADHD symptomatology as measured via the ADOS-2 and Conners-3, respectively.

Methods

- Participants had diagnoses of autism and/or ADHD, which were confirmed by research team (Table 1). Language samples were collected using a virtual reality paradigm where children viewed a classroom as they answered questions about themselves (e.g., "What is a normal day like for you?")
- DMs were identified via utterance-by-utterance coding, and qualitative analyses were conducted to determine the exact function of a DM in a particular utterance.
- Analyses were centered around clusters derived from k-means cluster analysis (based on ADOS-2 and Conners-3 scores) (Figure 1 & Table 2).

Table 1. Demographic information of the sample, M(SD)

<table>
<thead>
<tr>
<th></th>
<th>Autistic (n=18)</th>
<th>ADHD (n=22)</th>
<th>AuDHD (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>11.3 (1.8)</td>
<td>11.6 (2.4)</td>
<td>11.9 (2.3)</td>
</tr>
<tr>
<td>ADOS-2</td>
<td>9.3 (3.3)</td>
<td>4.6 (3.9)</td>
<td>10.8 (3.2)</td>
</tr>
<tr>
<td>Conners-3</td>
<td>60.3 (6.9)</td>
<td>72.9 (13.1)</td>
<td>80.2 (6.8)</td>
</tr>
<tr>
<td>(\eta^2)</td>
<td>0.013</td>
<td>0.393</td>
<td>0.434</td>
</tr>
<tr>
<td>Post Hoc</td>
<td>---</td>
<td>AuDHD > ADHD</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

- Findings revealed that having co-occurring symptomatology of ADHD neither buttressed nor further goaded challenges with DM use among autistic youth, suggesting that social communication challenges do NOT universally affect DM use (Figures 2a & 3a). Whereas youths with greater autism symptomatology used DMs in a quotative manner, possibly reflecting scripted phraseology, and/or to mark simple contrasts, youths with greater ADHD symptomatology used DMs for reformulation purposes and/or marking a V-O-E (Figures 2b & 3b), reflecting possible condition-specific behavioral patterns.

Figures 2a & b. "Like" use varies by autism symptomatology and function

Figures 3a & b. "But" use varies by ADHD symptomatology and function

Table 2. Number of children from original diagnostic groups into the four clusters (% of entire sample)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>ADOS (n=20)</th>
<th>Conners-3 (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>5 (25%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>13 (65%)</td>
<td>2 (6.7%)</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>0 (0%)</td>
<td>19 (63.3%)</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>0 (0%)</td>
<td>9 (30%)</td>
</tr>
</tbody>
</table>

a All clusters except Cluster 3 have equal split. Cluster 3 has equal split and/or reformulation purposes and/or marking a possible condition of meaning. Children's acquisition of "but," Cognitive Psychology, 147, 101937

References & Acknowledgments

10. We acknowledge the children and their families who participated in this research, as well as the dedicated students who transcribed the audio files. This research was supported in part by grants from the National Institute on Disability and Rehabilitation Research (NS021517) and the Institute for Education Sciences (R324F110174), as well as a travel award from the Institute of Brain and Cognitive Sciences.